# COVID-19 and Air Pollution in Louisiana

Kimberly Terrell, Ph.D.

Director of Community Outreach
Tulane Environmental Law Clinic
<a href="mailto:kterrell1@tulane.edu">kterrell1@tulane.edu</a> 504-865-5787

Prepared at the request of Concerned Citizens of St. John UPDATED APR 18, 2020

Global Agenda COVID-19 Global Health

## The deadly link between COVID-19 and air pollution



Clean air and clear skies in Dethi during India's COVID-19 tockdown

Image: REUTERS/Adnan Abidi

### The "Harvard Study"

# "A small increase in long-term exposure to PM 2.5 leads to a large increase in COVID-19 death rate"

1 μg/m<sup>3</sup> PM 2.5 pollution increases COVID-19 death rate by 15%.

The COVID-19 death risk grows larger as pollution levels increase.





Harvard Study: https://projects.ig.harvard.edu/covid-pm

# Particulate Matter 2.5 (PM 2.5)

- Also called "fine particles"
- A mix of chemicals, dust, and liquid droplets
- The name comes from the small size of the particles: under 2.5 microns (about 1/30 the diameter of a human hair).
- Comes from combustion (industrial plants, cars, fires)
- Can get deep into your lungs and enter the bloodstream
- Causes lung disease, heart disease, and lung cancer
- Worsens pre-existing lung disease

#### Patterns and "Noise"

- The Harvard Study accounted for other factors that influence COVID-19 death risk: population size and density, # tests, # hospital beds, smoking, body mass index, poverty, income, education, age, race, and weather.
- Factors that influence COVID-19 deaths act as "noise" and can obscure the pattern of air pollution and COVID-19 deaths.
- We can't eliminate all the "noise", but, if we look at a big enough population, the
  pattern will rise above the "noise".
- If we look at a small community, we probably won't see the pattern because of this
  "noise".

See: Wilson and Gordon, 1986. Calculating sample sizes in the presence of confounding variables. *Applied Statistics*. 35, p. 207-213. https://www.jstor.org/stable/2347271?seq=1



# Compared to the U.S., Louisiana has above-average PM 2.5 pollution

(measured from 2000 - 2016).



#### **DATA SOURCE**

17-Year average PM 2.5 concentrations (2000 – 2016). From: van Donkelaar, A., R. V. Martin, et al. (2019). http://fizz.phvs.dal.ca/~atmos/martin/?page\_id=140

WHO limit: https://www.who.int/news-room/factsheets/detail/ambient-(outdoor)-air-quality-and-health

\*Reported by https://projects.iq.harvard.edu/covid-pm.

# St. John Parish has above-average PM 2.5 levels, plus hotspots of even higher PM 2.5 levels in Reserve and LaPlace (measured from 2000 – 2016).





**PM 2.5 Pollution** (μg/m³)





## Louisiana's southeast industrial region has above-average COVID-19 death rates and high PM 2.5 levels.

#### **COVID-19 Deaths by Parish**\*

(# deaths per 10,000 people, as of 4/18/20)

$$\bigcirc$$
 2.0 – 4.1

$$()$$
 6.2 – 8.2

\*Based on CDC data, up to and including Apr 18, 2020 (33,049 deaths). Calculated from ACS 2019 U.S. population estimate (328,239,523).

• 17-Year average PM 2.5 concentrations (2000 – 2016), presented relative to the overall U.S. mean (8.4 μg/m³). From: van Donkelaar, A., R. V. Martin, et al. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2019, doi:10.1021/acs.est.8b06392. [Link]



#### **COVID-19 Deaths by Parish**

(# deaths per 10,000 people, as of 4/18/20)

| PARISH               | DEATH RATE |
|----------------------|------------|
| St. John the Baptist | 12.37      |
| Orleans              | 8.30       |
| Bienville            | 6.80       |
| St. James            | 6.64       |
| Iberville            | 6.46       |
| Jefferson            | 6.36       |
| St. Charles          | 5.08       |
| Plaquemines          | 4.74       |
| West Baton Rouge     | 3.78       |
| East Feliciana       | 3.66       |

#### **DATA SOURCES**

- Deaths per 10,000 people calculated from 2019 ACS population data (https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html) and Louisiana Department of Health. Coronavirus (COVID-19). Data accessed 4/18/2020. http://ldh.la.gov/Coronavirus/.
- 17-Year average PM 2.5 concentrations (2000 2016), presented relative to the overall U.S. mean (8.4 μg/m³). From: van Donkelaar, A., R. V. Martin, et al. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2019, doi:10.1021/acs.est.8b06392. [Link]

# Diabetes and obesity are risk factors for death from COVID-19 in Louisiana. But these health conditions don't fully explain the geographic pattern of COVID-19 death rates in Louisiana.

(Hypertension is also a risk factor for COVID-19 deaths in Louisiana, but hypertension data by parish aren't available.)





21.1 - 23.8

23.8 - 26.4

26.4 - 29.0

29.0 - 31.7 31.7 - 34.3 34.3 - 37.0 37.0 - 39.6 39.6 - 42.3

42.3 - 44.9

44.9 - 47.6

#### **DATA SOURCE**

Morehouse

Washington

St. Bernard

Grant

9

10

https://gis.cdc.gov/grasp/diabetes/DiabetesAtlas.html#

43.2

42.8

42.5

47.4

0.8

2.4

2.3



The closest LDEQ air monitor for PM 2.5 is 15 miles away from Denka/Dupont.

The only LDEQ air monitors in St. John Parish are ozone and lead.

 Louisiana Department of Environmental Quality (LDEQ)
 PM 2.5 Monitor

#### **DATA SOURCE**

https://www.deq.louisiana.gov/page/air-monitoring-sites

### Louisiana improved air quality from 2000-2015, but is now losing ground.





#### **DATA SOURCE**

PM 2.5 concentrations (2000 – 2016), presented relative to the overall U.S. mean (8.4 μg/m³). From: van Donkelaar, A., R. V. Martin, et al. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter using Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2019, doi:10.1021/acs.est.8b06392. [Link]

Industrialized communities in south Louisiana are overburdened by pollution and the resulting health risks, including COVID-19 mortality. Based on recent pollution trends, this disparity will continue and may worsen.



PM 2.5 concentrations (2000 – 2016), presented relative to the overall U.S. mean (8.4 μg/m³). From: van Donkelaar, A., R. V. Martin, et al. (2019). Regional Estimates of Chemical Composition of Fine Particulate Matter using Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2019, doi:10.1021/acs.est.8b06392. [Link]

#### **BONUS SLIDE – Seasonal changes in PM 2.5 in Louisiana in 2017**

Feb 2017



May 2017



PM 2.5 Pollution (μg/m³)

0 8.4 11.0 +
(U.S. Average)

World Health Organization recommended limit (10 μg/m³)

Aug 2017



Nov 2017



2017 overall



ED\_012929\_00007095-00016